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Multiple Sums

The terms of a (multiple) sum are governed by two indices j and k:∑
1≤j ,k≤3

ajbk = a1b1 + a1b2 + · · · + a3b2 + a3b3.

Only one
∑

sign is needed, although there is more than one index of
summation;

∑
denotes a sum over all combinations of indices that apply.
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For example, ∑
j

∑
k

aj ,k [P(j , k)]

is an abbreviation for ∑
i

(∑
j

aj ,k [P(j , k)]
)

which is the sum, over all integers j , of∑
k

aj ,k [P(j , k)]

the latter being the sum over all integers k of all terms aj ,k for which
P(j , k) is true. In such cases we say that the double sum is “summed first
on k .” A sum that depends on more than one index can be summed first
on any one of its indices.
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When we talk about a sum of sums, we use two
∑

’s. In this regard, we
have a basic law called interchanging the order of summation, which
generalizes the associative law.∑

j

∑
k

ajk [P(j , k)] =
∑
P(j ,k)

aj ,k =
∑
k

∑
j

aj ,k [P(j , k)].]

The middle term of this law is a sum over two indices. On the left,∑
j

∑
k

stands for summing first on k , then on j . On the right,∑
k

∑
j

stands for summing first on j , then on k . In practice when we want to
evaluate a double sum in closed form, it is usually either to sum it first on
one index rather than on the other; we get to choose whichever is more
convenient.
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We illustrate how to manipulate with the double sum using
∑∑

’s:∑
1≤j,k≤3

ajbk =
∑
j,k

ajbk [1 ≤ j , k ≤ 3]

=
∑
j

∑
k

ajbk [1 ≤ j ≤ 3][1 ≤ k ≤ 3] nine terms in no particular order

=
∑
j

∑
k

ajbk [1 ≤ j ≤ 3][1 ≤ k ≤ 3] nine terms are grouped into three

=
∑
j

aj [1 ≤ j ≤ 3]
∑
k

bk [1 ≤ k ≤ 3] by distributive law to factor out the a’s

=
(∑

j

aj [1 ≤ j ≤ 3]
)(∑

k

bk [1 ≤ k ≤ 3]
)
factors out (b1 + b2 + b3) for each j

=
( 3∑

j=1

aj
)( 3∑

k=1

bk
)
.
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General distributive law

Hence a general distributive law∑
j∈J
k∈K

ajbj =
(∑

j∈J
aj

)(∑
k∈K

bk

)
,

valid for all sets of indices J and K .

Here is a useful factorization:

[1 ≤ j ≤ n][j ≤ k ≤ n] = [1 ≤ j ≤ k ≤ n] = [1 ≤ k ≤ n][1 ≤ j ≤ k].

This Iversonian equation allows us to write

n∑
j=1

n∑
k=j

aj ,k =
∑

1≤j≤k≤n
aj ,k =

n∑
k=1

n∑
j=1

aj ,k . (1)
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One of these two sums of sums is usually easier to evaluate than the other.
We can use (1) to switch from the hard one to the easy one.

Consider the array 
a1a1 a1a2 · · · anan
a2a1 a2a2 · · · a2an

...
... · · ·

...
ana1 ana2 · · · anan


of n2 products ajak .

Our goal it to find a simple formula for

S
@

=
∑

1≤j≤k≤n
ajak

the sum of all elements on or above the main diagonal of this array.
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We can rename (j , k) and (k, j), we get

S
@

=
∑

1≤j≤k≤n
ajak =

∑
1≤k≤j≤n

akaj =
∑

1≤k≤j≤n
ajak = S

@
.

Since
[1 ≤ j ≤ k ≤ n] + [1 ≤ k ≤ j ≤ n] = [1 ≤ j , k ≤ n] + [1 ≤ j = k ≤ n],

we have 2S
@

= S
@

+ S
@

=
∑

1≤j ,k≤n
ajak +

∑
1≤j=k≤n

ajak . By the general

distributive law,∑
1≤j ,k≤n

ajak =
( n∑

j=1

aj

)( n∑
k=1

ak

)
=
( n∑

k=1

ak

)2
.

Therefore we have

S
@

=
∑

1≤j≤k≤n
ajak =

1

2

(
(

n∑
k=1

ak)2 +
n∑

k=1

a2k

)
an expression for the upper triangular sum in terms of simple single sums.
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Exercises

1. Using general distributive law, prove that( n∑
k=1

ak

)( n∑
k=1

bk

)
= n

n∑
k=1

akbk −
∑

1≤j<k≤n
(ak − aj)(bk − bj). (2)

The identity (2) yields Chebyshev’s monotonic inequalities as a
special case :

(a)
( n∑

k=1

ak
)( n∑

k=1

bk
)
≤ n

n∑
k=1

akbk if a1 ≤ a2 ≤ · · · ≤ an and

b1 ≤ b2 ≤ · · · ≤ bn.

(b)
( n∑

k=1

ak
)( n∑

k=1

bk
)
≥ n

n∑
k=1

akbk if a1 ≤ a2 ≤ · · · ≤ an and

b1 ≥ b2 ≥ · · · ≥ bn.

2. Prove that Sn =
∑

1≤j<k≤n

1

k − j
= nHn − n, by using a method on

multiple sums.
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One problem with several solutions

We look at a single example from several different angles. We are going to
try to find a closed form for the sum of the first n squares, which we
denote it by �n.

�n =
n∑

k=0

k2, for n ≥ 0.

We will see that there are at least 7 different ways to solve this problem.

Method 1 : Guess the answer, prove it by induction.

We may conjecture a closed form and we merely have to prove that it is
correct.

We may come up with the formula

�n =
n(n + 1

2)(n + 1)

3
, for n ≥ 0.

which works for small values of n.
P. Sam Johnson Multiple Sums 10/18



Method 2 : Perturb the sum (perturbation method)

We extract the first and last terms of �n+1 in order to get an equation for
�n :

�n + (n + 1)2 =
∑

0≤k≤n
(k + 1)2

Hence we get

�n + (n + 1)2 = �n + 2
∑

0≤k≤n
k + (n + 1).

We cannot find �n, but we can find
∑

0≤k≤n
k.

The above derivation reveals a way to sum the first n integers in closed
form ∑

0≤k≤n
k =

n(n + 1)

2
.
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Method 2 : Perturb the sum (perturbation method)

Could it be that if we start with the sum of the integers cubed (denoted by
Cn)?

We will get an expression for the integers squared? Let’s try it.

Cn + (n + 1)3 =
∑

0≤k≤n
(k + 1)3.

Hence
3Cn = (n + 1)3 − 3(n + 1)n/2 − (n + 1).

Thus

3Cn = n
(
n +

1

2

)
(n + 1).
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Method 3 : Build a repertorie (repertorie method)

Consider the recursion

�n = 0

�n = �n−1 + n2. (3)

The generalization of (3) is

Rn = α

Rn = Rn−1 + β + γn + δn2, for n ≥ 1

which has the solution of the form

Rn = A(n)α + B(n)β + C (n)γ + D(n)δ, for n ≥ 1.

If we consider our recurrence relation �n = Rn if we set α = β = γ = 0
and δ = 1. Thus

�n =
n(n + 1

2)(n + 1)

3
.
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Method 4 : Replace sums by integrals

Since �n is the sum of the area of rectangles whose sizes are

1 × 1, 1 × 4, . . . , 1 × n2,

it is approximately equal to the area under the curve f (x) = x2 between 0

and n. The area under the curve is

∫ n

0
x2dx =

n3

3
.
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Method 4 : Replace sums by integrals

Let us examine the error in the approximation,

En = �n −
1

3
n3.

En is the sum of areas of the wedge-shaped error terms and En satisfies
the simpler recurrence

En = �n −
1

3
n3

= E0 +
n∑

k=1

(k − 1

3
) =

n∑
k=1

(k − 1

3
).

Thus �n =
n∑

k=1

(k − 1

3
) +

n3

3
.
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Method 5 : Expand and contract (going from single sum
to a double sum)

�n =
∑

1≤k≤n
k2 =

∑
1≤j≤k≤n

k

=
∑

1≤j≤n

∑
j≤k≤n

k =
∑

1≤j≤n

( j + n

2

)
(n − j + 1)

=
1

2

∑
1≤j≤n

[n(n + 1) + j − j2]

=
1

2
n2(n + 1) +

1

4
n(n + 1) − 1

2
�n

=
1

2
n
(
n +

1

2

)
(n + 1) − 1

2
�n.
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Method 6 : Finite Calculus

Infinite calculus is based on the properties of the derivative operator D,
defined by

Df (x) = lim
h→0

f (x + h) − f (x)

h
.

Finite calculus is based on the properties of the difference operator ∆,
defined by

∆f (x) = f (x + 1) − f (x).

The symbols D and ∆ are called operators because they operate on
functions to give new functions ; they are functions of functions that
produce functions.

Next we shall discuss finite calculus.
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